39 research outputs found

    The H+ ATPase regulatory subunit of Methanococcus thermolithotrophicus: Amplification of an 800 bp fragment by polymerase chain reaction

    Get PDF
    AbstractAn 800 bp fragment of Methanococcus thermolithotrophicus genomic DNA was amplified by the polymerase chain reaction method using primers designed from conserved regions of the V-type H+ ATPase regulatory subunits from the archaebacterium Sulfolobus, and several eukaryotes. Although more than one product was obtained, only one of them had the expected size and was exclusively amplified in the presence of the left and right primers. The DNA and the deduced protein sequences of the putative Methanococcus H+ ATPase subunit revealed homology to the corresponding sequences in Sulfolobus and eukaryotes (about 60% identical residues) and a less evident homology to the eubacterial F1 -ATPase α-subunit (22% identical residues with E. coli)

    A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer

    Full text link
    We introduce a Markov model for the evolution of a gene family along a phylogeny. The model includes parameters for the rates of horizontal gene transfer, gene duplication, and gene loss, in addition to branch lengths in the phylogeny. The likelihood for the changes in the size of a gene family across different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space, where N is the number of organisms, hh is the height of the phylogeny, and M is the sum of family sizes. We apply the model to the evolution of gene content in Preoteobacteria using the gene families in the COG (Clusters of Orthologous Groups) database

    Statistical Mechanics of Horizontal Gene Transfer in Evolutionary Ecology

    Full text link
    The biological world, especially its majority microbial component, is strongly interacting and may be dominated by collective effects. In this review, we provide a brief introduction for statistical physicists of the way in which living cells communicate genetically through transferred genes, as well as the ways in which they can reorganize their genomes in response to environmental pressure. We discuss how genome evolution can be thought of as related to the physical phenomenon of annealing, and describe the sense in which genomes can be said to exhibit an analogue of information entropy. As a direct application of these ideas, we analyze the variation with ocean depth of transposons in marine microbial genomes, predicting trends that are consistent with recent observations using metagenomic surveys.Comment: Accepted by Journal of Statistical Physic

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Allelic Heterogeneity at the CRP Locus Identified by Whole-Genome Sequencing in Multi-ancestry Cohorts

    Get PDF
    Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European populations that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in >200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry population (n = 23,279) with WGS (∌38× coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evidence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and rs181704186), both of which are non-coding and more common in individuals of African ancestry (∌10% and ∌1% minor allele frequency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry). We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of 2.97 mg/L and major allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic populations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease

    Bioinformatic Genome Comparisons for Taxonomic and Phylogenic Assignments using Aeromonas as Test Case

    No full text
    International audienceProkaryotic taxonomy is the underpinning of microbiology, as it provides a framework for the proper identification and naming of organisms. The “gold standard” of bacterial species delineation is the overall genome similarity determined by DNA-DNA hybridization (DDH), a technically rigorous yet sometimes variable method that may produce inconsistent results. Improvements in next-generation sequencing have resulted in an upsurge of bacterial genome sequences and bioinformatic tools that compare genomic data, such as average nucleotide identity (ANI), correlation of tetranucleotide frequencies, and the genome-to-genome distance calculator, or in silico DDH (isDDH). Here, we evaluate ANI and isDDH in combination with phylogenetic studies using Aeromonas, a taxonomically challenging genus with many described species and several strains that were reassigned to different species as a test case. We generated improved, high-quality draft genome sequences for 33 Aeromonas strains and combined them with 23 publicly available genomes. ANI and isDDH distances were determined and compared to phylogenies from multilocus sequence analysis of housekeeping genes, ribosomal proteins, and expanded core genes. The expanded core phylogenetic analysis suggested relationships between distant Aeromonas clades that were inconsistent with studies using fewer genes. ANI values of ≄96% and isDDH values of ≄70% consistently grouped genomes originating from strains of the same species together. Our study confirmed known misidentifications, validated the recent revisions in the nomenclature, and revealed that a number of genomes deposited in GenBank are misnamed. In addition, two strains were identified that may represent novel Aeromonas species
    corecore